Methods, Tools, and Applications for Industrial Reverse Engineering of Legacy Parts

Michael Raphael
President & Chief Engineer
Direct Dimensions, Inc.
Baltimore, Maryland
Company Profile

Direct Dimensions is dedicated to tackling the most difficult challenges with the most advanced 3D technologies available. Direct Dimensions’ staff has the tools and experience to provide optimal solutions for any scale, from microns to meters.
Staff

Direct Dimensions scanning technicians have worked in every environment from jungle to city center to boiler-room basements using a variety of scanning and digitizing platforms.
Services

Direct Dimensions provides a wide variety of services:

- Laser Scanning
- Digitizing
- Reverse Engineering
- Digital Modeling
- Inspection Analysis
- Replication
- Visualizations & Animations
- Product Representation & Sales
- Training and Support
Products

Direct Dimensions is also a re-seller of a range of 3D solutions:
Scanners/Digitizers
Digitizers
Portable Arm Probes

- Range = 0 to 2 meters
- Accuracy = +/- .024 mm
- Ideal Applications
 - Automotive Parts
 - Aerospace Parts
 - Power Generation
 - "Geometric" Shapes
Laser Scanners

Portable Arm Scanners

- Range = 0 to 2 meters
- Accuracy = +/- 0.035 mm
- Ideal Applications
 - Dimensional Analysis
 - Cad-based Inspection
 - Alignment
 - "Organic" Surfaces
 - Reverse Engineering
Laser Scanners

Coordinate Measure Machine

- Range = 0 to ? meters
- Accuracy = +/- 0.02 mm
- Ideal Applications
 - Dimensional Analysis
 - Cad-based Inspection
 - Alignment
 - Reverse Engineering
 * Must fit in the machine
3D Scanner
Structured Light

- Range = .6 to 2 meters
- Accuracy = as low as .005 mm
- Ideal Applications
 - Small area inspection
 - Miniature sculpture
 - Intricate parts
Laser Scanner
Patch Scanners

- Range = .5 to 5 meters
- Accuracy = as low as .04 mm
- Ideal Applications
 - Sculpture
 - Face/Body
 - Vehicle parts
Hemispherical Scanners

Phase-Based

- Range = .5 to 120 meters
- Accuracy = as low as 1 mm
- Ideal Applications
 - Buildings
 - Vehicles
 - Large Sculpture
 - Bridges
 - “Overall” scans
Reverse Engineering
CAD Modeling

Point Cloud

Polygon Mesh

Rapid NURBS

Hybrid Model

Engineered Solid Model

Engineered Surface Model
Overview of the Solution:
Jeep Frame Case Study
Historical Overview of the Jeep

- Original “Jeep” Prototype
- 1940 American Bantam Car Company pilot model
Specific Client Request

• Measure various parts from antique BRC-40 Jeep frame
• Parts needed to be completed in an AutoCAD format
• Accurate models needed so client can duplicate them exactly
• Specific parts include: frame rails, spring mounts, and “K” cross member
Identifying the Problem

- Original deteriorating frame posed measurement problems because of frame warping and corroded components
- "Design intent" model needed
Initial Step – Laser Scanning and Data Capture

• Scanning the Jeep frame with the LDI Laser Scanner
Next Step – Aligning Point Clouds

• Aligning the captured point clouds in RapidForm
Next Step – Mirroring Frame

- Mirroring and Comparing one side of the frame to the other
Next Step – Polygonal Modeling

• Aligning, cleaning, and filling in holes on the polygonal model
Next Step – Reverse Engineering Specific Parts

• Aligning part positions to hole locations and other features
Next Step – Reverse Engineering Specific Parts

- Aligning part positions to hole locations and other features
Next Step – Reverse Engineering Specific Parts

- Reverse Engineering and creating specific features from the polygonal and geometric data
Next Step – Reverse Engineering Specific Parts

- Continuing to create and align specific parts to the overall rail form
Next Step – Comparing Captured Polygonal Model to “Design Intent”

• Overlaying the “Design Intent” model on top of the completed polygonal model to check for error and inconsistencies
Final Step – Deliver Requested Models

• Complete all modeling and deliver the requested models in proper formats
DDI used the LDI Scanner on a 12' FARO Arm to capture an antique jeep frame. The main structure of this corroded and warped frame was reverse engineered to produce an accurate design intent model. This new solid model can now be used to manufacture new jeep parts.
Methods, Tools, and Applications for Industrial Reverse Engineering of Legacy Parts

Michael Raphael
President & Chief Engineer
Direct Dimensions, Inc.
Baltimore, Maryland

www.DirectDimensions.com
mraphael@dirdim.com
BACKUP Slides
DDM Workflow
DDM Workflow
2D-3D CAD Migration

2D Plans → 3D wireframe → 3D Solid → Manufacture
DDM Workflow
Legacy Part - No Plans

Legacy Part → Laser Scan → Point Cloud → 3D Solid → Manufacture
DDM Workflow

Legacy Part - No Plans - Worn/Broken

Legacy Part ➔ Laser Scan Point Cloud ➔ Worn/Broken ➔ “Design Intent”

3D Solid ➔ Manufacture
Aerostructure
Mechanical Design
Consumer Products
Custom Components
removed jeep frame process
The grip shown was the last replacement part in the Navy's inventory. The manufacturer was out of business and no tooling or drawings existed. DDI precisely measured and modeled the part and an SLA was created for use as a pattern for a new casting.
GRIP

Problem:
More physical parts were needed to be manufactured at a low quantity.

Solution:
Using reverse engineering, DDI was able to deliver a clean parametric Solidworks cad model that could then be machined to create the necessary amount of parts.
GEAR

Because no blueprints existed for the gear component, DDI was asked to reverse engineer the part. The Faro Arm was used to measure the features and the data was used to model the part as a solid and to create the drawing.

1. original gear
2. measuring by FARO Arm
3. extrapolated data
4. controlled drawing from data
5. rendered solid
CAST

The FARO Arm was used to digitize a critical component of a marine air handling system. The actual blade measurement data was compared to the nominal engineering design for location and contour accuracy.
propellant mixer

An aged critical component of a propellant mixer for the Army needed replacing. No drawings or tooling existed. The FARO Arm was used to measure, a CAD model was created, and a rapid prototype was built. The RP model was used directly as a pattern for a new casting for the new part.
PROPELLERS

The FARO Arm is an excellent device for measuring the pitch and complex contour of marine propellers. The software provides for circular cross-section scanning for proper pitch analysis.
Advanced inspection and analysis tools simplify the dimensional verification of this complex cast part. The laser quickly scans the surfaces without contact and creates an accurate point cloud. The scan cloud is then compared to the nominal engineering CAD model and the results are displayed in easy to understand color graphical images.
As a demonstration, DDI laser scanned and modeled motorcycle brake brackets in order to complete an inspection of the parts. Using the captured 3D data, DDI was able to accurately show where the actual parts were different from the supplied CAD reference models.
The extents and mounting points of this OEM gas engine needed to be determined so it could be installed into a new product. DDI used a laser scanner to gather a dense point cloud. The points were interpolated and output in the form of an STL file.
The restoration of classic automobiles has always been plagued with problems associated with formed sheet metal parts. Corrosion, dents, and scratches are sometimes so severe that the original part cannot be repaired. Laser scanning allows damaged parts to be modeled in the computer. Dents, scratches, and corrosion can then be removed in the virtual model yielding a shape true to the original designer's intent. This final model can then be used to fabricate new dies and parts.
Using the Surphaser spherical scanner, DDI was able to capture over 190,000 points per second, creating highly accurate, high-resolution 3D point clouds of a C-5 cargo bay. The data was needed for space planning when filling the aircraft with equipment and other necessary items.
DDI measured the exterior of an entire commercial airplane using a laser tracker. The tracker was positioned in eight different positions to scan all areas. A complete accurate 3D CAD model of the entire surface was created from the raw data. The model was used for CFD analysis for modifications.
c-2 cockpit
BOTH PILOTS
Careful measurements and precise features were captured by the point probe on the FARO arm. This data, once gathered, was output in various formats to show that the individual pieces could be reverse engineered. That data could then be used to precisely recreate each part.
Problem:
Client modifying a 30 yr. old yoke design had no blueprints or CAD models. The organic shape presents measurement challenges using traditional methods.

Solution:
Using Laser Scanning and Touch Probe measurement, DDI collected dimensional and surface data and recreated the "hybrid model" yoke combining geometric features with a "dumb solid" of the organic shape.

DIRECT dimensions
rapid solutions to 3D problems...™

10310 S. Dalfield Road
Owings Mills, MD 21117
phone 410-998-0880
www.dirdim.com
info@dirdim.com
fax 410-998-0887
The following examples show views of an actual aircraft internal structure versus the matching reverse engineered 3D CAD models. Using captured laser scan data, Direct Dimensions was able to precisely reverse engineer these parts into CAD data.
Using accurate 3D laser image data from the actual Liberty Bell, Direct Dimensions engineers created a 3D CAD model of the Pass & Stow original design from 1753 for the Liberty Bell, prior to the formation of the crack and with no casting or aging defects. This dimensional information was provided to the Cornille-Havard bell foundry in France to cast the Normandy Liberty Bell.
DDI was asked to laser scan the remains of tank cars that had exploded due to the pressurized chemicals inside. This data was needed to document the wreckage, as well as provide forensics experts with a starting point for their investigation.
Direct Dimensions laser scanned and modeled an armored Humvee in order to deliver a solid 3D model that would provide the client with accurate bolt locations. These bolt locations and specific parts of the vehicle were needed in 3D in order to properly retrofit additional armor and plating onto the existing vehicle.
Problem: A complete prosthetic “implant” was needed in order to reconstruct patient’s skull.

Solution: Using CT data from a full skull, DDI was able to create a piece that fit perfectly with the damaged skull. The 3D data can now be rapid prototyped and attached surgically.
Methods, Tools, and Applications for Industrial Reverse Engineering of Legacy Parts

Michael Raphael
President & Chief Engineer
Direct Dimensions, Inc.
Baltimore, Maryland

www.DirectDimensions.com
mraphael@dirdim.com